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GENOME METHODS 

Lane Tracking Software for Four-color 
Fluorescence-based Electrophoretic 

Gel Images 
Mat thew L. Cooper, 1'3 David R. Maffitt,  2 Jeremy D. Parsons, 1 

LaDeana Hillier, and David J. States 2 

1Genome Sequencing Center, Department of Genetics, and 2Institute for Biomedical Computing, 
Washington University School of Medicine, St. Louis, Missouri 63110 

Software to track sample lanes automatically in four-color, fluorescence-based, electrophoretic gel images has 
been developed for application in large-scale DNA sequencing projects. Lanes and lane boundaries are 
tracked by analyzing a first difference approximation to the gradient of a vertically integrated and processed 
"brightness" profile. Initially lanes are located in a region of the gel image selected for good horizontal lane 
spacing and signal strength. The software uses models of expected lane and interlane spacing and lateral lane 
behavior to maintain accurate tracking on imperfect gels. In areas where intensity-based tracking is difficult, 
interpixel column correlation is also used to locate and define lane features. Summary statistics and 
compressed-in-time images are generated for user evaluation of tracking performance. The software 
developed has been tested successfully on gel images with degradations including significant horizontal lane 
motion (curving} and image artifacts, and is now in full-scale use in our sequencing projects. 

Increasing the level of automation of electropho- 
retic DNA sequencing is an important and well- 
documented challenge to the Human Genome 
Project (HGP) (Watson 1985). Several advances 
toward this end have been made, including, most 
notably, the development of fluorescence-based 
sequencing  ins t ruments  (Smith et al. 1986; 
Prober et al. 1987; Ansorge et al. 1988; Brum- 
baugh et al. 1988). Fluorescence-based sequenc- 
ing systems allow the coupling of electrophoretic 
separation, fragment detection, image analysis, 
trace processing,  and base-call ing, w i thou t  
manual intervention. This level of automation is 
predicated on robust, high-performance software 
that, in the case of sample lane tracking, is only 
now becoming available (Berno 1996). 

The genomes of several model organisms are 
being completely sequenced as part of the HGP, 
including that of Caenorhabditis elegans. In the 
context of sequencing the C. elegans genome, 
manual tracking of sample lanes in the gel images 
has proven to be a time-consuming obstacle to 
achieving increased throughput  and further au- 
tomation of accurate, reproducible sequence de- 

3Corresponding author. 
E-MAIL mlc@cis.wustl.edu; FAX (314) 286-1810. 

termination (Wilson et al. 1994). Recently, dou- 
bling the channel sampling across the gel has al- 
lowed us to increase the number of samples per 
gel from thirty-six to sixty-four, but has resulted 
in a concomitant increase in the difficulty and 
time required to manually reposition the track- 
ing lanes on the appropriate samples. In the most 
problematic gel images, manual correction of the 
vendor-supplied tracking software on difficult 
gels can require up to 3 hr. This effort is necessi- 
tated by the failure, almost total in some cases, of 
the supplied data collection software to accu- 
rately track samples in gels exhibiting anomalous 
sample migration patterns. 

To further automate the pathway from DNA 
sequence of individual shotgun clones to con- 
tiguous cosmid sequences, algorithms to accu- 
rately locate and track lanes of DNA sequencing 
fragments in fluorescence-based four-color elec- 
trophoretic gel images have been developed and 
tested successfully. The new software for lane 
tracking significantly reduces the manual pro- 
cessing time invested in gel image analysis, and 
represents the first step in the development of a 
complete UNIX-based gel analysis package. 

Our goal is to locate and accurately track the 
lanes in a gel image that result from excitation 
and detection of electrophoretically separated, 
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fluorescently labeled fragments of DNA. Many 
available gel analysis packages rely on vendor- 
supplied lane tracking software (Golden et al. 
1993), manual tracking of the lanes (Giddings et 
al. 1993), or, most often, a combination of the 
two. The automation of lane tracking is difficult 
for a number  of reasons. In principle, the nega- 
tively charged phosphate backbones of the DNA 
fragments should cause them to electrophorese 
in a straight path through the pores of the poly- 
merized acrylamide gel in the presence of a linear 
potential gradient. In practice, gel or plate con- 
taminants, excess salt in loaded samples, electric 
field or polymerization variability, or machine 
misuse or failures can cause the lanes to move 
laterally, sometimes significantly. Furthermore, 
image artifacts of undetermined origin are often 
observed. These can be described as "stripes" or 
"patches" in the gel image of approximately con- 
stant intensity that obscure the underlying data. 
Postulated causes of artifacts include gel impuri- 
ties, plate scratches, dust on the detector, laser 
cutout, buffer leaks, and software failures. Ob- 
served artifacts, even within a single gel image, 
fail to exhibit a consistent set of characteristics, 
and can be mistaken for lanes by tracking soft- 
ware. Also, gels may contain empty lanes as a 
result of failed reactions or poorly formed wells, 
and lateral spacing, lane width,  and signal 
strength can vary considerably with the location 
in the gel image and the comb used in loading. 

Our software, Getlanes, has been designed 
for use with four-color fluorescence-based elec- 
trophoretic gel images. All code is written in ANSI 
C. Thus far, the gel images have been generated 
by the Applied Biosystems (ABI) 373A Sequenc- 
ing Instrument, and accompanying 388 Channel 
Data Collection and Analysis Software (Version 
1.2.388) or the ABI 377 Sequencing Machine and 
194 Channel Data Collection and Analysis Soft- 
ware (Version 2.1). The 194 Channel Software 
has also been used with the ABI 373A. Once data 
collection (on the Macintosh connected directly 
to the sequencing machine) is complete, the gel 
file is transferred to a UNIX file system using one 
of many available UNIX/Macintosh file-sharing 
packages, Columbia Appleshare Protocol (CAP, 
publicly available from Columbia University). 
This transfer separates the image data, contained 
in the ABI gel file data fork, and the resource data, 
contained in the ABI gel file resource fork, into 
two UNIX files. These two files are then processed 
by Getlanes in the UNIX environment.  

After lane tracking, one-dimensional traces 
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are extracted down the lanes from each of the 
four ABI filter images. These traces are then pro- 
cessed and used for base calling. Presently, ABI 
gel files are transferred to a UNIX machine for 
automatic tracking by a daemon that runs Get- 
lanes using default options, and then back to a 
Macintosh for manual  inspection. The daemon 
process runs continuously, and regularly checks 
specified directories spawning processes to ex- 
ecute the lane tracking software on any new gel 
files it discovers. Statistics are compiled in log 
files. Once the gel is back on a Macintosh, the 
ABI-supplied software is used for both trace ex- 
traction and preprocessing. 

In the future, additional UNIX tools will be 
available for gel inspection, manual  tracking, and 
trace preprocessing. Locally optimized UNIX- 
based base-calling software is already in use in 
our project (P. Green, unpubl.). Thus our overall 
aim is to use only the ABI Data Collection soft- 
ware and to complete the gel analysis using im- 
proved UNIX-based software, including the soft- 
ware documented here. The design of these tools 
is modular to permit comparative testing of each 
individual component  prior to the completion of 
our entire gel analysis package. 

RESULTS 

We have tested Getlanes in three ways. First, we 
have tested the software using gel images exhib- 
iting extreme (and unusual) imperfections. Fig- 
ures 1-3 show three such gel images with artifacts 
and extreme lateral sample. The gel of Figure 3 
possesses an artifact in the lower left that  crosses 

Figure 1 Example gel imperfections. (A) A promi- 
nent artifact is crossing the curving lanes. (B) The gel 
is shown tracked using lane-behavior models. 
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Figure 2 The most curved section of the gel in A 
is shown retracked in B, demonstrating the success 
of our definition of a lane using peaks and bound- 
aries even in an area of large lateral movement. This 
gel also has "missing" lanes in which the signal is 
weak. The gel is retracked with missing lanes added, 
automatically enabling the application of our spac- 
ing models. 

several of the underlying lanes, but its effects are 
minimized by the application of the horizontal 
spacing model (see Methods). Such artifacts con- 
fuse algorithms lacking lane behavior models, as 
artifacts often have greater intensity than the 
lanes nearby, as seen in the intensity plot of Fig- 
ure 4 of a vertically integrated horizontal slice of 
this gel image. The gel in Figure 2A exhibits se- 
vere curving of the lanes at the top of the image 
(physically, the bottom of the gel). This gel tests 

Figure 3 (A) Artifacts that make tracking in the 
lower left corner extremely difficult and erase most 
hopes of determining the underlying sequence. (B) 
The gel is shown tracked by Getlanes salvaging 
much of the data. 

1 1 12 ~ GENOME RESEARCH 

the robustness of our definitions for lanes as im- 
age features. The gel of Figure 3A contains an 
artifact that makes manual tracking nearly im- 
possible. This necessitates a combination of hori- 
zontal and vertical lane behavior models, de- 
scribed in Methods. 

Second, we have tested the software's perfor- 
mance statistically against ABI software as well as 
human retracking. A comparison of Getlanes, the 
software supplied by ABI and human tracking is 
shown in the Tables 1 and 2, prepared using pro- 
duction data from our lab. Table 2 presents the 
results of Table 1 normalized by the correspond- 
ing manual results. In preparing these statistics, 
ABI lane-tracking software placed more than one 
lane on a single sample in some instances. This 
has skewed our statistics in favor of ABI in some 
cases. To partially correct for this, ABI results 
were not allowed to exceed the corresponding 
human result used for normalization. Obviously, 
double tracking a single sample can create major 
problems in any subsequent data processing. 

To obtain summary statistics, we subjected 
the data to our normal laboratory protocols for 
data processing. Data (tracked with either ABI or 
Getlanes software or manually) for each lane was 
extracted and processed using the ABI analysis 
software for both. Base calls were performed us- 
ing the program PHRED (P. Green, unpubl.). 
Each trace was evaluated for quality and removed 
entirely or trimmed based on measures of peak to 
highest noncalled peak values and peak to shoul- 
der ratios. Regardless of trace quality, trimming 
was not allowed to extend past 400 bases. Se- 
quences were screened for sequencing and clon- 
ing vector (10-12% of the sequences are entirely 
vector) and removed or clipped accordingly. The 
percentage success shown in Table 1, then, is the 
number of vector-free, high-quality reads divided 
by the total number of reads processed (number 
of lanes loaded) for ABI-tracked data versus Get- 
lanes-tracked data, both without manual inter- 
vention. The mean number of bases per success- 
ful trace is the mean clipped read length (clipped 
for vector and for low-quality data) for the suc- 
cessful reads. This method provides a measure of 
the ability of the tracking to successfully follow 
the lane throughout the length of the gel. The 
mean bases per lane loaded is the sum of the 
quality, vector-clipped read lengths divided by 
the total number of reads processed (total num- 
ber of lanes loaded). Finally, the number of en- 
tered bases is the sum of the quality, vector- 
clipped read lengths of the successful reads. 

 Cold Spring Harbor Laboratory Press on January 14, 2009 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


2.6 

2.4 

2.2 

2 

1.8 

1.6 

t .4  
50 

x t O  c 

. . . . . . . . . . . . . . . . . . . .  

66 70 75 80 05 gO g5 1 O0 
I'1 orizo.tal I~dex 

Figure 4 This plot shows the effect of the artifact in the lower 
left of the gel from Fig. 1. The artifact obscures the peak result- 
ing from the true lane at index 81. The peak resulting from the 
true lane becomes the shoulder on the left of the peak resulting 
from the artifact at index 83. This effect is overcome by the use 
of horizontal spacing models. 

Judging from the successful trace percentage 
in Table 1, the sample of gels used here is below 
average in quality, and Getlanes is successful in 
salvaging data. The statistics demonst ra te  that  
the software performs approximate ly  as well as a 
human ,  and significantly better t han  ABI. In six 
of the  20 cases summar i zed  above, Get lanes  
tracking yielded >2000 more entered bases than  
ABI, and in one instance >10,000 more. In four 
cases where ABI tracking yielded more bases, only 
once did ABI successfully track an addi t ional  
sample, indicat ing that  it tracks the same sample 
with more than  one lane when  it fails to locate an 
expected number  of lanes. In these cases, using 
the h u m a n  result as a correction, the number  of 

LANE TRACKING SOFTWARE 

bases entered using ABI tracking never ex- 
ceeded the Getlanes result by 1000 bases 
(on a 64-lane gel). In five cases, the number  
of bases entered using Getlanes tracking ex- 
ceeded the h u m a n  result. 

M13 subclones for the  data summa-  
rized above came from bo th  h u m a n  ex- 
pressed sequence  tags, p lasmid artificial 
chromosomes,  and C. elegans cosmids. In 
most  cases, sample lanes are tracked very 
similarly by humans  and Getlanes. Human  
tracking does not  yield major  gains in the 
number  of bases called and entered into our 
cosmid sequence data bases. Thus,  data  
tracked by h u m a n s  and missed by Getlanes 
are often of poor quali ty and cannot  be in- 
cluded in assemblies of larger cont iguous 
sequences. 

Finally, we have tested Getlanes by full- 
scale i n t r o d u c t i o n  in to  our  p r o d u c t i o n  
groups. Although transferring the gel files 
from the ABI Macintosh to the UNIX sys- 
tem and back again is cumbersome,  it en- 
ables us to evaluate the performance of Get- 
lanes prior to the complet ion of the down- 
s t r e a m  p r o c e s s i n g .  N o n e t h e l e s s ,  t h e  
performance of Getlanes'  has dramatically 
reduced t ime spent  m a n u a l l y  retracking 

sample lanes as documented  below, despite these 
unnecessary data transfers. It is est imated that  
the use of this software in our group has reduced 
the number  of people performing this task by up 
to 60% and t ime spent per gel by  up to 80%. 

DISCUSSION 

The lane tracking approach described here was 
designed as a useful compromise  between speed 
and  p e r f o r m a n c e ,  and  r u n  t imes  on  a Sun 
SPARC5 workstat ion for 388 Channel  ABI 373A 
gels conta in ing 6000 rows or more are - 1 - 2  min.  
The m e m o r y  required is -14  megabytes,  but  up to 

Table 1. Raw Performance Statistics 

Success Mean bases Mean bases 
(%) per successful trace per lane loaded Entered bases 

ABI 57 287.5 203.4 10743 
Getlanes 69 312.55 241.1 12923 

Statistics shown compiled over 19 standard 64-lane production gels. Entries are averaged over the 19 gels. 
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Table 2. Normalized Performance Statistics 

Success Mean bases Mean bases 
(%) per successful trace per lane loaded Entered bases 

ABI 81 95 84 81 
Getla nes 100 100 99 98 

Statistics normalized by corresponding results of manual tracking. Compiled over 19 standard 64-lane pro- 
duction gels. Entries are averaged over the 19 gels, then normalized by the corresponding human average. 

two-thirds of this may be the gel image data, and 
could be compressed by an order of magnitude if 
needed (the compression would merely store in- 
tensity information as it is laterused: multiple 
rows summed together so no useful information 
would be lost). The brightness technique, though 
simplistic, provides great flexibility in the adap- 
tation of our models to the data and was found to 
be significantly better on gels with poor signal 
strength, though poor, at times, in the presence 
of artifacts. The correlation approach was more 
effective when lanes merged and in the presence 
of certain artifacts. Its pitfall is the use of the four- 
column neighborhood that implicitly assumes 
that lane and interlane features can be distin- 
guished using correlation over any four columns. 
This may not be true for unusually large gaps 
between lanes or wide lanes. The choice of a four- 
column neighborhood yielded the best overall 
performance for our data, and the two ap- 
proaches to tracking complement  each other 
very well. Other more sophisticated approaches 
were considered and sometimes tested, but 
deemed unnecessary given the success of the cur- 
rent version. 

The most common error made by the soft- 
ware, although relatively infrequent, is to miss 
one of the outermost lanes of the gel. It is a 
straightforward error to correct in general, be- 
cause additional lanes are placed to the right side 
of the tracked lanes, so they do not interfere with 
the tracking of correctly identified lanes. This er- 
ror is due to stringent requirements of peaks that 
are labeled as lanes in the starting window. These 
requirements are used to avoid mistaking inten- 
sity maxima resulting from artifacts or back- 
ground fluctuations for lanes. The performance 
of the software on gels with low signal, missing 
lanes, or curving lanes is satisfactory in large part 
because of the definitions of a lane as a global 
image feature, and the behavior models that are 
used to track each lane, as described earlier. 

Tolerances of the spacing models vary with 
the tracking techniques to best exploit the differ- 
ent profiles, though the overall structure is the 
same. By tracking boundaries closely, it is hoped 
that in extracted one-dimensional traces, signal 
strength will be maximized, as the horizontal in- 
tegrations between the boundaries will span the 
full lane width. Two hundred locations of lane 
boundaries for each lane are recorded, and sum- 
mary statistics, as well as compressed-in-time 
tagged image file format (TIFF) images are pro- 
duced. Code is also available to extract traces 
down the tracked lanes using a horizontal inte- 
gration over a user-specified or automatically 
computed lane width moving down the lanes. 
The program's use of command line flags to con- 
trol its options is very flexible for interactive use 
and allows its easy integration into scripts. 

Future versions of the software could, if nec- 
essary, use larger scale modeling of gel features, 
one- and two-dimensional image enhancement, 
reduced memory requirements, and dynamic 
programming. We also plan to make it compat- 
ible with other sequencing technologies as well 
as the aforementioned complete UNIX-based gel 
tracking and analysis interface and package cur- 
rently in development. 

Conclusion 

The development of this software has addressed a 
significant obstacle to automatic high-through- 
put, reproducible sequence determination. The 
software is routinely used by our production se- 
quencing groups. The results of its use on 40-50 
gel images per day for several months indicate 
that it improves upon vendor-supplied software 
markedly, and approximates human  tracking 
performance. The further automation of lane 
tracking and gel file management has signifi- 
cantly reduced the time invested by our produc- 
tion groups in this tedious task. It is hoped that 
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our  c o m p l e t i o n  of a r o b u s t  U N I X - b a s e d  sof tware  

p a c k a g e  to  t rack  lanes ,  ex t r ac t  a n d  p r e p r o c e s s  

traces, a n d  m a k e  base  calls wil l  b o t h  inc rease  t h e  

t h r o u g h p u t  a n d  i m p r o v e  t h e  s e q u e n c e  q u a l i t y  of  

large-scale  DNA s e q u e n c i n g  pro jec ts .  

METHODS 
The algorithm's structure is depicted in Figure 4, and de- 
tailed below. For additional details, the source code is 
available as noted at the conclusion of this paper. First the 
image data is loaded and preprocessed to form a composite 
image. From the composite image, a starting point is se- 
lected, and horizontal tracking profiles are generated by 
filtering the vertical sum of 40-50 rows of the image (de- 
scribed in more detail below). Using the starting tracking 
profile, global characteristics of the gel are identified. With 
these global characteristics and lane behavior models, 
tracking of lanes and lane boundaries proceeds iteratively 
over the whole image. 

Image Preprocessing 
The ABI gel file contains four filter images, produced by 
filtering the scan data with four bandpass filters tuned to 
the emission spectra of the four fluorescent dye primers 
used. The four filter images are loaded and summed to 
form a brightness image. Several image-processing steps 
are performed to facilitate subsequent tracking. The first is 
a crude background subtraction. After determining the 
maximum and minimum intensities of the image, the 
minimum value is subtracted from the entire image, and 
the image is normalized to a maximum intensity of 512. 
Then, a histogram equalization is performed to the nor- 
malized image, to increase its contrast and dynamic range 
(Gonzales and Woods 1992). 

A starting point for tracking is then selected from a 
sample of gel regions by comparison of signal strength and 
horizontal lane spacing. Greater signal strength improves 
the detection of lanes and lane boundaries. Likewise, regu- 
lar spacing increases the effectiveness of the lane behavior 
models applied later and facilitates the determination of 
characteristics of the gel as a whole, including missing 
lanes, horizontal boundaries of the lane data, and the 
number of lanes in the image. Algorithms that attempt to 
process disjoint portions of the gel without these global 
parameters are unable to track lanes in more difficult re- 
gions of the gel (Blanchard 1993). 

In each of three regions, a horizontal gel profile is 
formed by vertically integrating over a fixed window with 
a size of between 30 and 50 rows. The window size used by 
these algorithms in the iterations described later is com- 
puted as a function of the total number of rows in the gel 
image. In each of these profiles, maxima and minima are 
located, and signal strength is compared by computing the 
mean peak intensity. The standard deviation of the inter- 
maxima widths is used to evaluate the regularity of the 
horizontal spacing of the lanes. The ratio of the mean peak 
height to the standard deviation of the intermaxima dis- 
tance is maximized to select the starting region. 

Next, the starting window intensity histogram is 
computed and used to identify the horizontal boundaries 
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of the portion of the image containing the lanes. The 
modes of this histogram tend to be background intensities. 
Thus, the maximum background intensity is estimated by 
comparison of the incremental integral of the histogram 
and the total integral, as in Equation 1. 

max x)} 
0 ~ I < 5 1 2  i=0 0 ~ i < 5 1 2  

The subscript i represents intensity, between 0 and 511, 
and xi represents the number of pixels in the starting win- 
dow with intensity i. Thus the xi comprise the histogram of 
the starting window. 

This equation is a thresholding of the gel image, using 
a threshold computed by approximating the unnormal- 
ized cumulative distribution function of the intensity with 
the integral of the histogram. In each row of the starting 
window, the outermost columns in which the intensity 
equals or exceeds XB as computed in Equation 1 are found. 
Of these, the outermost columns are marked as horizontal 
boundaries for the area containing the lane data in the 
starting window. These boundaries are adjusted according 
to the lateral movements of the outermost lanes through- 
out the gel image. 

The number of lanes in the image, as well as missing 
lanes, are identified and compared with the expected 
number, determined according to ABI machine type. If the 
expected number of lanes is not found, a compensatory 
number of "artificial" lanes are added on the right side of 
the image to be available for subsequent manual tracking. 
Alternatively, the positions of the leftmost and rightmost 
lanes (horizontal boundaries for lane data), the number of 
lanes, and starting region can be specified explicitly in the 
command line. 

The software then iterates in both directions verti- 
cally to cover the entire image. At each iteration, the soft- 
ware locates and tracks lanes over a 50% redundant win- 
dow of the gel consisting of typically 30-50 rows. After one 
or more horizontal gel profiles are used to locate and de- 
fine the lanes, lane behavior models are used to fine-tune 
the tracking, and to work through difficult portions of the 
images. 

Tracking Techniques 
The software uses multiple tracking techniques. The first 
approach, which has proven the most robust in practice, is 
the brightness-based approach. An intensity-based profile 
is formed by vertical integration over the current window 
of the brightness image. This profile is filtered for peak 
enhancement, and a first-difference approximation to the 
gradient is computed to identify maxima, which are 
marked as lane locations. The output  of the peak- 
enhancement filter, at horizontal index i, is given in Equa- 
tion 2 for input profile f a row vector with elements in- 
dexed from 1 to 388, as the ABI channels, and ~fthe mean 
of the elements of that row vector: 

f~-l. ~. f~+l 
h i - ix f 2  (2) 

Location of gradient extrema allows us to determine lane 
boundaries. Gradient maxima are labeled as left lane 
boundaries, and gradient minima are labeled as right lane 
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The lane behavior models  are applied in 
two steps. In the first step, each lane lo- 

~,. cation is analyzed individually for con- 
sistency with lane locations in the pre- 
vious iteration. The lane locations are 
const ra ined to lie be tween  the corre- 
sponding lane boundaries tracked in the 

, previous i terat ion.  This res t r ic t ion is 
1 based on empirical observations that  the 
I max imum lateral velocity of a lane is ap- 
/ proximately one pixel per 20 rows and 

that  typical lane widths are three to four 
pixels. This underlies the concept  of lane 

j m o m e n t u m ,  that  the lateral movements  
of lanes occur in consistent directions in 
localized areas of the gel image. W h e n  ,! 

/ no  peak is found wi thin  a lane's bound-  
,/ aries from the previous i teration,  the 

/ software estimates its location based on 
m o m e n t u m  observed in the two previ- 
ous iterations. Lane boundaries must  be 
within  an absolute distance of the lane 
and their previous locations, or they are 
estimated similarly. This approach pre- 
cludes mislabeling maxima or gradient 
extrema due to background fluctuations, 
gel artifacts, or even neighboring lanes 
as a particular lane or lane boundary.  

In the second step, the models applied reflect collec- 
tive characteristics of the lane locations in any horizontal  
window of the gel. After the current lane and lane bound-  
ary locations are established as above, first-order statistics 
are computed  by which  outliers in terms of lane width or 
interlane width are identified. These outliers are processed 
in an iterative routine to correct tracking errors similar to 
those above. The vertical models used are the same, but  
here are applied to the lane and interlane widths rather 
than to the lane and lane boundary  locations. The hori- 
zontal models used impose regularity on the lane and in- 
terlane widths across the gel. An estimate for lane location 
or boundaries for statistical outliers is computed  by aver- 
aging estimates based on the horizontal  and vertical be- 
havior models. First-order statistics are recomputed and 
the iteration continues until  the spacing satisfies the con- 
straints of the model,  or until  a m a x i m u m  number  of it- 
erations is reached, when  horizontal  lane spacing is un- 
usually irregular. Generally this second step efficiently 
fine-tunes the tracking locations established in the first 
step, and is no more than a quality check. 

Figure 5 Flowcharts depicting the stucture of Getlanesl.0. The flow- 
chart on the right details the two iterations in the flow chart on the left. 

boundaries .  The a lgor i thm then  applies models  of ex- 
pected lane behavior, as detailed below, and iterates to 
cover the entire image. 

The second approach calculates in tercolumn correla- 
t ion coefficients in the four filter images independent ly  
over four co lumn neighborhoods,  in which  the current 
co lumn is the third co lumn from the left. The columns 
used in these computat ions  span the current window (30- 
50 rows). Portions of the four images being used are stored 
in cache memory  to reduce the memory  needed for access 
to the large color images. The correlation coefficients are 
combined  to create an alternative horizontal  gel profile. 
Let the quant i ty  xi O Xj equal the correlation coefficient of 
the vectors xi and Xj. In Equation 3 below, X i denotes the 
co lumn of the current window at horizontal  index i. The 
value of the profile at horizontal  index i is computed  as 
follows: 

Xi = ~ [(Xi-2 0 ~/)+ (X/-1 ~ ~i) 
Filter Images 

+ (Xi-20 Xi+I) + (Xi-1 ~ Xi+l)] (3) 

This profile is made  nonnegat ive  by subtraction of its 
m i n i m u m  value, then  normalized and scaled to a maxi- 
m u m  value equal to the mean  of the maxima of the bright- 
ness data. This profile is processed similarly to the previ- 
ously men t ioned  brightness approach, and either me thod  
can be used exclusively th roughou t  the gel via a c o m m a n d  
line option.  

The default approach is a combina t ion  of the two. 
The brightness profile is computed  initially, and in cases 
where it fails to reveal expected lanes or lane boundaries as 
required by the models below, the correlation profile is 
checked for improved feature definition. Brightness is the 
initial technique  applied for its speed and generally reli- 
able performance. 
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NOTE 
The following sites on the World Wide Web are available: 
to obtain CAP and related documenta t ion :  h t tp : / /  
www.cs.mu.oz.au/appletalk/cap.page; to obtain Getlanes 
and related documentation (note: distribution or use of 
Getlanes and all software listed here for commercial pur- 
poses without permission of the Genome Sequencing Cen- 
ter of the Washington University School of Medicine is 
s t r ic t ly  p roh ib i ted) :  h t t p : / / g e n o m e . w u s t l . e d u / g s c /  
gschmpg.html; to obtain the Getlanes Daemon (Perl Script 
for automatic running of Getlanes) and related documen- 
tation: http://genome.wustl.edu/gsc/gschmpg.html; and 
to obtain the TIFF software library and related documen- 
tat ion: ht tp: / /www.sgi .com/Fun/ t i f f / t i f f -v3.4beta018/  
html/index.html. 
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